
J Glob Optim (2007) 39:79–100
DOI 10.1007/s10898-006-9121-1

O R I G I NA L PA P E R

A new global optimization method for univariate
constrained twice-differentiable NLP problems

Min Ho Chang · Young Cheol Park ·
Tai-Yong Lee

Received: 28 April 2005 / Accepted: 2 November 2006 / Published online: 6 December 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper, a new global optimization method is proposed for an optimi-
zation problem with twice-differentiable objective and constraint functions of a single
variable. The method employs a difference of convex underestimator and a convex
cut function, where the former is a continuous piecewise concave quadratic function,
and the latter is a convex quadratic function. The main objectives of this research
are to determine a quadratic concave underestimator that does not need an iterative
local optimizer to determine the lower bounding value of the objective function and
to determine a convex cut function that effectively detects infeasible regions for non-
convex constraints. The proposed method is proven to have a finite ε-convergence to
locate the global optimum point. The numerical experiments indicate that the pro-
posed method competes with another covering method, the index branch-and-bound
algorithm, which uses the Lipschitz constant.

Keywords Global optimization · Difference of convex underestimator ·
Convex cut function · Univariate NLP

1 Introduction

The general univariate NLP problem is stated as follows:

min f (x)

subject to gj(x) ≥ 0, j = 1, . . . , J,
x ∈ X = [xL, xU],

where f (x) is the objective function, gj(x), j = 1, . . . , J, are constraints, and x is the
decision variable.

M. H. Chang · Y. C. Park · T.-Y. Lee (B)
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science
and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea
e-mail: tylee@kaist.ac.kr

80 J Glob Optim (2007) 39:79–100

In order to solve the global optimization problem, many envelope methods have
been proposed. The envelope is sometimes called an underestimator (or overestima-
tor) for a minimization (or maximization) problem. Most envelope methods can be
divided into two categories: convex underestimators and concave underestimators. If
a convex underestimator is used, a local optimizer is needed in most cases. However,
a concave underestimator is developed without a local optimizer.

Floudas et al. (2005) reviewed recent studies involving convexification techniques
and convex envelopes for twice-differentiable NLPs. A commonly used convex
underestimator is the one which is used in the αBB algorithm. The underestimator of
αBB is generated to underestimate any twice-differentiable function, as proposed by
Maranas and Floudas (1992). The αBB algorithm, which is a hybrid method involv-
ing a convex underestimator and a Branch-and-Bound (BB) algorithm was proposed
and further developed by Maranas and Floudas (1994), Androulakis et al. (1995),
Adjiman et al. (1996, 1998a, b), Adjiman and Floudas (1996), and Floudas (2000a).
In the αBB algorithm, the nonconvex part of the objective function and constraints
are divided into bilinear, trilinear, fractional, fractional trilinear, univariate concave,
and general nonconvex terms, since, when constructing a convex underestimator for
the function, the linear and convex terms do not require any transformation or an
underestimator. There are improvements for various types of models and functions
(Floudas et al. 2005), such as mixed-integer nonlinear models (Adjiman et al. 2000),
differential-algebraic models (Esposito and Floudas 2000), grey-box and nonfactor-
able models (Meyer et al. 2002), explicit facets of convex and concave envelopes for
trilinear functions (Meyer and Floudas 2004), and convex underestimator for trigono-
metric functions (Caratzoulas and Floudas 2005). For general nonconvex functions,
Adjiman et al. (1998a) and Hertz et al. (1999) investigated the methods of calculating
α using uniform and nonuniform diagonal shifts of the Hessian matrix, since a smaller
α resulted in a tighter underestimator of the twice-differentiable function. A new class
of improved convex underestimator, GαBB, has been proposed by Akrotirianakis and
Floudas (2004a,b) and has shown improvements compared with the αBB. A spline
αBB has been proposed by Meyer and Floudas (2005) with a piecewise quadratic
function perturbation and a decrease in the difference between the objective function
and the underestimator.

On the other hand, a concave underestimator, the Lipschitz underestimator, was
introduced by Pijavskii (1972) and was developed by many researchers, such as Basso
(1982), Mayne and Polak (1984), Hansen et al. (1992a,b), Hansen and Jaumard (1995),
and Horst and Tuy (1996). The underestimator has a saw-tooth shape for the univar-
iate objective function. Breiman and Culter (1993) proposed an envelope using a
Lipschitzian derivative; MacLagan et al. (1996) proposed smoothed and accelerated
BC (Breiman and Culter) envelopes; Sergeyev (1998) applied smooth auxiliary func-
tions with a Lipschitzian derivative to make a smooth underestimator; and Gergel
and Sergeyev (1999) improved the Lipschitzian derivative with sequential and par-
allel algorithms. Another concave underestimator is the polyhedral underestimator
(Horst and Tuy 1996); it is utilized especially within concave minimization problems
that have a concave objective function. The polyhedral underestimator is generated
as a concave polyhedral using the concavity of the objective function. This underesti-
mator is called a polyhedral annexation or an inner approximation.

For nonconvex constraints, several methods have been proposed. Some treat
constraints implicitly, i.e., the constrained problem can be transformed into an uncon-
strained one using either a penalty, barrier, or augmented Lagrangian approach by

J Glob Optim (2007) 39:79–100 81

Elwakeil and Arora (1996) and Wang and Wah (1996). The Index Branch-and-Bound
Algorithm (IBBA) for Lipschitz problems was proposed by Sergeyev et al. (2001,
2003) to handle the multiextremal constraints implicitly. This method converts the
constrained problem into a discontinuous unconstrained problem using an index
scheme without introducing additional parameters or variables. On the other hand,
several methods have been developed from late 1990s to handle general constraints
explicitly. Especially for the deterministic methods, there have been several meth-
ods that handle the general constraints differently. Using a reformulation of the
original nonconvex constraints, relaxed problems become convex NLPs, as in Ryoo
and Sahinidis (1995), Smith and Pantelides (1997), Zamora and Grossmann (1998),
Adjiman et al. (1998b), and Floudas (2000b). Furthermore, several interval methods
are proposed by Kearfott (1995), Ichida (1996), Byrne and Bogle (1999), and Jansson
(2001) to handle general constrained nonconvex problems. These methods use the
branch-and-bound algorithm and the information on constraints to reduce or discard
infeasible subregions. Ryoo and Sahinidis (1995) proposed a feasibility-based range
reduction technique, which introduced additional variables or bounded some vari-
ables based on the original problem constraints. Adjiman et al. (1998b) proposed a
variable bound reduction technique to reduce selected variable bounds.

The αBB is based on the notion that the convex underestimator function is uni-
modal and has a unique (and global) minimum. The modified αBB framework for
nonconvex functions, such as GαBB and spline αBB, are focused on making an
improved underestimator compared with αBB (Floudas et al. 2005). However, if the
global minimum of a certain underestimator can always be readily found, then it does
not matter whether the underestimator is convex or not. In this study, a difference of
convex underestimator (DCU), which is a continuous piecewise concave quadrature,
is proposed and is focused on making an underestimator that does not need a local
optimizer to determine the lower bound. The global minimum of the DCU is found
easily via simple linear algebra. The lower bounding function can be updated using
only one calculation of the objective function and its first derivative. Additionally,
the upper bound is obtained while updating the lower bound. To handle nonconvex
constraints, a convex cut function (CCF) is proposed. The CCF is generated using
a similar methodology to the generation of the DCU. The infeasible region of the
multiextremal constraints can be detected by generating the CCF.

In Section 2 and 3, the convex underestimator of αBB and DCU are, respectively,
introduced for unconstrained problems. The methodology for generating the CCF for
multiextremal constraints is introduced in Sect. 4. The overall algorithmic procedure
is shown in Sect. 5. The results of the test problems are stated in Sect. 6, and our
conclusions are presented in Sect. 7.

2 Convex underestimator of αBB

In general, an unconstrained single variable minimization problem can be defined by

min f (x)

subject to x ∈ X = [xL, xU].

The convex underestimator of the αBB algorithm with a general unconstrained NLP
problem is defined by

82 J Glob Optim (2007) 39:79–100

L(x) = f (x) + Q(x),
Q(x) = α(xL − x)(xU − x),

(1)

where f (x) is a nonlinear objective function and belongs to C2, L(x) is a relaxed
convex underestimator, Q(x) is a quadratic function convexifying L(x), and α is a
nonnegative constant.

Because Q(x) in Eq. 1 is nonpositive over the entire interval [xL, xU], L(x) is a
guaranteed underestimator of f (x). Furthermore, L(x) becomes a convex function
since Q(x) has a sufficiently large value of α:

L′′(x) = f ′′(x) + 2α.

Adjiman et al. (1998a) suggested several methods to calculate α. Most methods needed
an interval second derivative [f ′′(x)] such that f ′′(x) ∈ [f ′′(x)] for any x ∈ [xL, xU]. The
interval second derivative was calculated using the interval arithmetic of f ′′(x):

α = max

{
0, −1

2
min
x∈X

[f ′′(x)]
}

. (2)

3 DCU for an unconstrained optimization problem

Let us consider C(x), an intermediate function which is an underestimator of L(x),
and define a new underestimator of f (x), D(x):

D(x) = C(x) − Q(x). (3)

When C(x) is less than or equal to L(x), D(x) is less than or equal to f (x), since L(x)

is a convex function defined using equations (1) and (2).
In Eq. 3, an intermediate function, C(x), can be selected using a quadratic function:

C(x) = c0 + c1x + c2x2.

Then, Eq. 3 becomes

D(x) = C(x) − Q(x)

= (c0 − αxLxU) + (c1 + αxL + αxU) x + (c2 − α) x2.

As shown in Table 1, C(x) and D(x) can be classified into five cases, depending on
the value of c2. Case I is the same as the case of Kim and Lee (2001)’s convex qua-
dratic underestimator that was used as an accelerator for the underestimator in the
αBB algorithm. Case II is similar to the bounding function of Lipschitz optimiza-
tion (Hansen and Jaumard 1995). The present study is focused on case IV, since the
underestimator of case IV can be obtained easily.

Table 1 Classification of
underestimator

Case c2 C(x) D(x)

I α < c2 Convex quadratic Convex quadratic
II c2 = α Convex quadratic Linear
III 0 < c2 < α Convex quadratic Concave quadratic
IV c2 = 0 Linear Concave quadratic
V c2 < 0 Concave quadratic Concave quadratic

J Glob Optim (2007) 39:79–100 83

Let us consider case IV, where c2 = 0. In this case, C(x) and D(x) are denoted as
R(x) and S(x), respectively. The intermediate underestimator, R(x), is a linear function
and can be obtained by generating the tangential line of L(x), since L(x) is a convex
function. The ultimate underestimator, S(x), for the objective function is a quadratic
concave function. Using R(x), S(x) can be generated using the following equation at
the trial point, x = x̃:

R(x) = L′(x̃)
(
x − x̃

) + L(x̃).

S(x) = R(x) − Q(x). (4)

When R(x) is the tangential line of L(x) at x = x̃, S(x) is less than or equal to f (x).
Now, let us construct R(x) as an open polyhedron using a finite number of tangential

lines of L(x) to make a tight underestimator of L(x):

Rk(x) = max
{
r(x; x̃1), r(x; x̃2), . . . , r(x; x̃k)

}
, (5)

where

r(x; x̃i) = L′(x̃i)
(
x − x̃i

) + L(x̃i) for i = 1, . . . , k. (6)

Note that r(x; x̃i) is the tangential line of L(x) at x = x̃i and k is the number of
tangential lines. Thus, Rk(x) is a continuous piecewise linear function; it is an open
polyhedron on each edge that is a segment of the tangential line of L(x). Rk(x) is con-
vex and is clearly an underestimator of L(x), since each r(x; x̃i) is an underestimator
of L(x). Then, the corresponding Sk(x) is also generated by Eq. 4:

Sk(x) = Rk(x) − Q(x)

= max
{
r(x; x̃1) − Q(x), r(x; x̃2) − Q(x), . . . , r(x; x̃k) − Q(x)

}
= max

{
s(x; x̃1), s(x; x̃2), . . . , s(x; x̃k)

}
, (7)

where

s(x; x̃i) = −α(x − x̃i)
2 + f ′(x̃i)(x − x̃i) + f (x̃i) (8)

and Sk(x) is a continuous piecewise concave quadratic function and is also an under-
estimator of f (x). Let us define a set of the trial points, Z:

Z = {x̃1, x̃2, . . . , x̃k}.
If x̃1 < x̃2 < · · · < x̃k, a set of the intersections between s(x; x̃i) and s(x; x̃i+1) can be
defined as Yk:

Yk = {x|s(x; x̃i) = s(x; x̃i+1) for i = 1, . . . , k − 1}.
The upper bound is determined by selecting the minimum value among f (x̃i) for i =
1, . . . , k, which are evaluated automatically while generating r(x; x̃i) for i = 1, . . . , k:

f U
k = min

x∈Z
f (x). (9)

The lower bound is determined by selecting the minimum of Sk(x), which is located
at one of the vertices of Sk(x):

f L
k = min

x∈X
Sk(x) = min

x∈Yk
Sk(x) = Sk(x̆), (10)

84 J Glob Optim (2007) 39:79–100

where
x̆ = arg min

x∈Yk
Sk(x). (11)

3.1 Basic algorithm

Step 1 Initialization:

(1) Given f (x), xL, and xU, let X = [xL, xU].
(2) α > max

{
0, − 1

2 minx∈X [f ′′(x)]
}

.

(3) Let x̃1 = xL and x̃2 = xU.
(4) Calculate s(x; x̃i) for i = 1, 2 using Eq. 8.
(5) S0(x) = max{s(x; x̃1), s(x; x̃2)}.
(6) Y0 = {x|s(x; x̃1) = s(x; x̃2)} and Z = {x̃1, x̃2}.
Step 2 Repetition: for k = 1, 2, . . .,

(1) Calculate s(x; x̃i)∀x̃i ∈ Yk−1 for i = 1, . . . , nk−1, using Eq. 8, where nk−1 is the
number of elements of the set Yk−1.

(2) Sk(x) = max{Sk−1(x), s(x; x̃1), s(x; x̃2), . . . , s(x; x̃nk−1)}.
(3) Yk = {x|Sk−1(x) = s(x; x̃i) for i = 1, 2, . . . , nk−1}.
(4) Z = Z ∪ Yk−1.

3.1.1 Convergence

After kth iteration of the basic algorithm, n(Yk)= 2k and n(Z)= 2k+1. Let xL = x̃1 < x̃2
< · · · < x̃2k+1 = xU, where x̃i ∈ Z for i = 1, 2, . . . , 2k + 1, and Xki = [x̃i, x̃i+1], where
X = ⋃

i Xki for i = 1, 2, . . . , 2k.

Theorem 1 Let f (x) be twice-differentiable, βL = 1
2 infx f ′′(x) > −α, βU = 1

2 supx f ′′(x)

∀x ∈ X = [xL, xU], and lXki = x̃i+1 − x̃i, length of Xki for i = 1, 2, . . . , 2k. In the basic
algorithm,

1. limk→∞ lXki = 0 ∀i ∈ [1, 2, . . . , 2k] and
2. limk→∞ (f (x) − Sk(x)) = 0.

Proof For any subinterval Xki, let us find the intersection between s(x; x̃i) and
s(x; x̃i+1), x̆i:

x̆i − x̃i

x̃i+1 − x̃i
=

f ′(x̃i+1) + α(x̃i+1 − x̃i) − f (x̃i+1)−f (x̃i)

x̃i+1−x̃i

f ′(x̃i+1) − f ′(x̃i) + 2α(x̃i+1 − x̃i)
=

1
2 f ′′(ξ2) + α

f ′′(ξ3) + 2α
,

where

f (x̃i) = f (x̃i+1) + f ′(x̃i+1)(x̃i − x̃i+1) + 1
2 f ′′(ξ2)(x̃i − x̃i+1)

2,
f ′(x̃i) = f ′(x̃i+1) + f ′′(ξ3)(x̃i − x̃i+1)

and x̃i ≤ ξ2, ξ3 ≤ x̃i+1. Because f ′′(x) ∈ [2βL, 2βU] ∀x ∈ X,

x̆i − x̃i

x̃i+1 − x̃i
≥ γ

J Glob Optim (2007) 39:79–100 85

or

x̃i+1 − x̆i

x̃i+1 − x̃i
≤ 1 − γ < 1, (12)

where γ = βL+α
2(βU+α)

. Similarly,

x̆i − x̃i

x̃i+1 − x̃i
≤ 1 − γ < 1. (13)

At the k + 1st iteration of the basic algorithm, Xki is divided into:

X(k+1)(2i−1) = [x̃i, x̆i],
X(k+1)(2i) = [x̆i, x̃i+1].

Using Eqs. 12 and 13, the length of X(k+1)(2i−1) and X(k+1)(2i) is reduced compared
with the length of Xki, at the worst case, with a ratio, 1 − γ , which is determined as
a value smaller than unity. Therefore, the lengths of Xki, ∀i, converge to zero as k
increases.

Let us define the difference between the objective function and the DCU, �k(x),
as follows:

�k(x) = f (x) − Sk(x)

= min{δ1(x), δ2(x), . . . , δ2k(x)},
where

δi(x) =
{

δi1(x) = f (x) − s(x; x̃i) for x ∈ [x̃i, x̆i],
δi2(x) = f (x) − s(x; x̃i+1) for x ∈ [x̆i, x̃i+1].

The interval of δi1(x) is as follows:

0 ≤ δi1(x) ≤ (βU + α)(x̆i − x̃i)
2 for x ∈ [x̃i, x̆i],

because δ′′
i1(x) ∈ [2(βL + α), 2(βU + α)], δi1(x̃i) = 0, and δ′

i1(x̃i) = 0. The interval of
δi2(x) is as follows:

0 ≤ δi2(x) ≤ (βU + α)(x̆i − x̃i+1)
2 for x ∈ [x̆i, x̃i+1],

because δ′′
i2(x) ∈ [2(βL + α), 2(βU + α)], δi2(x̃i+1) = 0, and δ′

i2(x̃i+1) = 0.

0 ≤ δi(x) < (βU + α)(x̃i+1 − x̃i)
2 (14)

The interval of �k(x),

0 ≤ �k(x) < max{(βU + α)(x̃i+1 − x̃i)
2| for i = 1, 2, . . . , 2k}.

Therefore, �k(x) converges to zero as k increases, because the length of interval, Xki
∀i ∈ Yk, converges to zero as k increases. �

3.1.2 Convergence near a global optimum

In the basic algorithm, the function evaluations are performed at every vertex for
every iteration. That means the underestimator of the basic algorithm, Sk(x), is close
to the objective function in the entire region. Using the ‘cut-off test’ based on Eqs.
9 and 10, however, the search region can be reduced. Using the reduction procedure

86 J Glob Optim (2007) 39:79–100

of the search region, the search region narrows to the region including a global opti-
mum, and the objective function becomes convex in this region. In order to show the
convergence of objective function near the global optimum, let βL = 1

2 infx f ′′(x) > 0,
βU = 1

2 supx f ′′(x) ∀x ∈ X = [xL, xU], α is given in Eq. 2, and x∗ ∈ X, where x∗ is a
global minimum and f ′(x∗) = 0.

Let us execute the basic algorithm for the objective function, after the kth iteration,
n(Yk) = 2k and n(Z) = 2k + 1. Let xL = x̃1 < x̃2 < · · · < x̃2k+1 = xU, where x̃i ∈ Z
for i = 1, 2, . . . , 2k + 1, Xki = [x̃i, x̃i+1], and X = ⋃

i Xki for i = 1, 2, . . . , 2k. Using Eqs.
12 and 13, the length of the subinterval Xki is bounded as follows:

γ k�x ≤ lXki ≤ (1 − γ)k�x, (15)

where �x = xU − xL. An upper bound, f U
k , can be bounded using Eq. 9:

f U
k = min

x∈Z
f (x) = f (x̃m).

A lower bound on a subinterval Xki, f L
Xki

, can be determined as follows:

f L
Xki

= min{f (x̃i), f (x̃i+1), s(x̆i; x̃i)}.

If f L
Xki

= f (x̃i) for x̃i > x̃m, Xki can be discarded (cut-off-test):

0 ≤ x̆i − x̃i ≤ f ′(x̃i)

α
, (16)

since s(x̆i; x̃i) − f (x̃i) = −α(x̆i − x̃i)
2 + f ′(x̃i)(x̆i − x̃i) and f (x̃i) < f (x̃i+1). Let us con-

sider a subinterval Xk(m−2k−2) for k ≥ 2 and m+2k−2 ≤ 2k. The condition of discarding
Xk(m+2k−2) can be obtained using Eqs. 13, 15, and 16:

(1 − γ)k+2 ≤ 2βL

α
(γ 3 − γ k+1), (17)

where

x̆m+2k−2 − x̃m+2k−2 ≤ (1 − γ)k+1�x and

f ′(x̃m+2k−2) ≥ 2βL(x̃m+2k−2 − x∗) ≥ 2βL(x̃m+2k−2 − x̃m+1) ≥ 2βL
γ 3 − γ k+1

1 − γ
�x,

since 2βL ≤ f ′′(x) ≤ 2βU ∀x ∈ X, f (x∗) = 0, x∗ ∈ [x̃m−1, x̃m+1], and x̃m+2k−2 − x̃m+1 ≥
(γ 3 + γ 4 + · · · + γ k)�x. Similarly, a subinterval Xk(m−2k−2−1) for m − 2k−2 − 1 ≥ 1
can be discarded using the previous condition. Therefore, the search region can be
reduced as follows:

X =
min{m+2k−2,2k}⋃

i=max{1,m−2k−2}
Xki. (18)

The length of the new search region can be bounded using Eq. 15:

lX ≤ (1 − 2k−1γ k)�x.

J Glob Optim (2007) 39:79–100 87

The difference between upper and lower bounds, d, can be bounded using Eqs. 14 and
15 as follows:

d = f U
k − f L

k < (2βU + α)(1 − γ)2k�x2,

where

f U
k ≤ f ∗ + βU(1 − γ)2k�x2 and

f L
k > f ∗ − (βU + α)(1 − γ)2k�x2,

since 2βL ≤ f ′′(x) ≤ 2βU ∀x ∈ X and f (x∗) = 0.
Let µ be the smallest integer k that satisfies Eq. 17. After reducing the search

region, n(Yµ)= 2µ−1 and n(Z)= 2µ−1 + 1. At the next iteration, 2µ−1 function eval-
uations are required. Using this procedure, the length of the search region can be
repeatedly bounded. After additional iterations of similar procedure, the total num-
ber of function evaluations, n, is 2µ + 1 + (k − µ)2µ−1 for k ≥ µ, and the length of the
new search region can be reduced as follows:

lX ≤ (1 − 2µ−1γ µ)k−µ+1�x.

The upper bound of the difference between upper and lower bounds, dU
n , for the total

number of function evaluations, n, is as follows:

d < dU
n = (2βU + α)(1 − γ)2k�x2.

Definition 1 Suppose {pn}∞n=0 is a sequence that converges to p, with pn
= p for all n.

If positive constant λ and η exist with limn→∞ |pn+1−p|
|pn−p|η = λ, then {pn}∞n=0 converges

to p of order η, with asymptotic error constant λ.

dU
n+2µ−1

dU
n

= (2βU + α)(1 − γ)2(k+1)�x2

(2βU + α)(1 − γ)2k�x2
= (1 − γ)2. (19)

Let η = 1 in definition 1. Then, the limit of the left-hand side of Eq. 19 is

lim
n→∞

dU
n+2µ−1

dU
n

= lim
n→∞

dU
n+1

dU
n

dU
n+2

dU
n+1

· · ·
dU

n+2µ−1

dU
n+2µ−1−1

= λ2µ−1

r , (20)

where λr is the asymptotic error constant for the basic algorithm near a global opti-
mum (relaxed algorithm). By Definition 1, we can say that the method shows linear
convergence (η = 1) and the asymptotic error constant is determined using Eqs. 19
and 20:

λr = (1 − γ)22−µ

.

3.2 Algorithm 1

In Algorithm 1, the number of the objective function evaluation and its first deriv-
ative per one iteration is one, which is selected using Eq. 11: Algorithm 1 has the
effect of a ‘cut-off test’ compared with the basic algorithm, since the vertex with a
larger value of Sk(x) than the upper bound in Eq. 9 cannot be selected. Algorithm 1
converges faster than the relaxed Algorithm near a global optimum, since the relaxed

88 J Glob Optim (2007) 39:79–100

x
2 3 4

-250

-200

-150

-100

-50

0

50

f(x)

L(x)

R3(x)

S3(x)

1
newx

2
newx

r(x;)

4x

4x

Fig. 1 Graphical representation of the proposed DCU

algorithm halves the number of subintervals after each 2µ−1 function evaluations by
removing the subintervals that do not include a global optimum. To find the solution
of Eq. 11 easily, the elements of Yk are sorted with the values of Sk(x) decreasingly. x̆
is determined by the selection of the last element of Yk.

If the stopping rule is not satisfied, let k = k + 1, select the next trial point x̃k = x̆,
and Z = Z ∪ {x̃k}. r(x; x̃k) is generated as a tangential line of L(x) at x = x̃k using
Eq. 6; Rk(x) is determined using Eq. 5. Yk is built by deleting one vertex from and
adding two vertices to Yk−1; the sequence of the elements in Yk is updated with the
values of Sk(x), respectively:

Yk = (Yk−1 − {x̃k−1}) ∪ {xnew
1 , xnew

2 } ∩ X, (21)

where xnew
1 < xnew

2 and are the locations of the new vertices that are the intersecting
points between Rk−1(x) and r(x; x̃k). For k = 1,

xnew
1 = xL and

xnew
2 = xU.

(22)

For k ≥ 2, xnew
1 and xnew

2 are determined by:

Rk−1(xnew
1) = r(xnew

1 ; x̃k), xnew
2 = +∞ for x̃k = xL

Rk−1(xnew
1) = r(xnew

1 ; x̃k), Rk−1(xnew
2) = r(xnew

2 ; x̃k) for xL < x̃k < xU

xnew
1 = −∞, Rk−1(xnew

2) = r(xnew
2 ; x̃k) for x̃k = xU.

(23)

f U
k can be obtained by selecting the minimum value between f U

k−1 and f (x̃k):

f U
k = min

{
f U
k−1, f (x̃k)

}
. (24)

Sk(x), f L
k , and x̆ are determined using Eqs. 7, 10, and 11.

The proposed underestimator is shown in Fig. 1: at k = 3, R3(x) and S3(x) are
obtained using Eqs. 5 and 7, respectively. The next trial point, x̆ = x̃4, is obtained
using Eq. 11. r(x; x̃4) is calculated using Eq. 6 and the two new points, xnew

1 and xnew
2 ,

are generated using Eq. 23. The iterations continue until the stopping rule is satisfied.

J Glob Optim (2007) 39:79–100 89

Step 1 Initialization:

(1) Given f (x), xL, and xU, let X = [xL, xU].
(2) Determine α using Eq. 2.
(3) Let x̆ = (xL + xU)/2, Y0 = {x̆}, and Z = ∅.
(4) Let k = 1 and x̃k = x̆.

Step 2 Generation of DCU:

(1) Let Z = Z ∪ {x̃k}.
(2) Generate r(x; x̃k), Rk(x), and Sk(x) using Eqs. 5–7.
(3) Determine Yk using Eqs. 21–23.
(4) Compute f L

k using Eq. 10.
(5) If k = 1, then f U

k = f (x̃k), else compute f U
k using Eq. 24.

(6) Determine the next trial point, x̆, using Eq. 11.
(7) Let k = k + 1.

Step 3 Convergence test:

(1) If x > x̆ ∀x ∈ Z, x̆L = xL. Otherwise x̆L = max{x|x < x̆ for x ∈ Z}.
(2) If x < x̆ ∀x ∈ Z, x̆U = xU. Otherwise x̆U = min{x|x > x̆ for x ∈ Z}.
(3) If x̆U − x̆L < ε, terminate.
(4) Otherwise let x̃k = x̆ and go to Step 2.

The stopping rule is selected with the same stopping rule of the sequential algorithm
proposed by Gergel and Sergeyev (1999): a convergence accuracy, ε = 10−4(xU −xL).

4 CCF for a nonconvex constraint

If the trial point is located in an infeasible region while executing algorithm 1, the
most violated nonconvex constraint, g(x), which has the lowest function value among
gj(x) for j = 1, . . . , J at the trial point, is selected and the CCF is generated to escape
from the infeasible region. To generate the CCF, the overestimator of g(x), Lg(x), is
generated by:

Lg(x) = g(x) − Qg(x) ≥ g(x)

Qg(x) = αg(xL − x)(xU − x),
(25)

where g(x) is the most violated constraint, and αg is chosen as a non-negative number
large enough to make Lg(x) concave. αg can be determined by using a method similar
to that for determining α in Sect. 2:

αg = max

{
0,

1
2

max
x∈X

[g′′(x)]
}

. (26)

The CCF of g(x), Sg(x; x̃), is generated using Rg(x; x̃), the tangential line of Lg(x) when
the trial point, x = x̃, is located in an infeasible region:

Sg(x; x̃) = Rg(x; x̃) + Qg(x)

= αg(x − x̃)2 + g′(x̃)(x − x̃) + g(x̃), (27)

where

Rg(x; x̃) = L′
g(x̃)

(
x − x̃

) + Lg(x̃). (28)

90 J Glob Optim (2007) 39:79–100

When αg is selected using Eq. 26 to make Lg(x) concave in the given region and
Rg(x; x̃) is a tangential line of Lg(x), Sg(x; x̃) is greater than or equal to g(x). A set
defining the infeasible region, X inf, can be determined by solving Sg(x; x̃) < 0:

X inf = {x|Sg(x; x̃) < 0 for x ∈ X}. (29)

The search region, X, can be reduced as follows:

X = X − X inf. (30)

The underestimator of f (x), Sk(x), is a piecewise concave quadratic, but not continu-
ous in the new search region. The set of locations of the vertices of Sk(x), Yk, should
be updated to reflect the new search region:

Yk = (Yk − W1) ∪ W2, (31)

where W1 = {x|Sg(x) < 0 for x ∈ Yk} and W2 = {x|Sg(x) = 0 for x ∈ X}. The
sequence of the elements of Yk should be sorted by the values of Sk(x) decreasingly.
If Yk = ∅, there is no search region: the problem is infeasible. Otherwise, the new
trial point is obtained using Eq. 11 in the new search region. If g(x) is concave, αg = 0
and Sg(x) = Rg(x). Sg(x) becomes a linear function and is the same as reducing a
search region of the cutting plane method. The overall situation of generating the
CCF is shown in Fig. 2. In Fig. 2a, x̃ is selected to be the next trial point. In Fig. 2b,
Rg(x; x̃) and Sg(x; x̃) are generated using Eqs. 27 and 28. In Fig. 2c, X inf = [xinf

L , xinf
U] is

determined using Eq. 29. Using Eq. 31, Yk is updated by deleting x̃ ∈ W1 and adding
xinf

L , xinf
U ∈ W2.

5 Algorithmic procedure

The algorithm for an univariate NLP is constructed by adding a step involving a fea-
sibility test to Algorithm 1. While executing Algorithm 1, the trial point is checked
for feasibility. If the point is located in a feasible region, the DCU will be generated.
Otherwise, the CCF will be generated to escape from the infeasible region.

5.1 Algorithm 2

Step 1 Initialization:

(1) Given f (x), gj(x) for j = 1, . . . , J, xL, and xU, let X = [xL, xU].
(2) Determine α and αgj using Eqs. 2 and 26.
(3) Let x̆ = (xL + xU)/2, Y0 = {x̆}, and Z = {x̆}.
(4) Let k = 1 and x̃k = x̆.
(5) Go to Step 3.

Step 2 Feasibility test:

(1) Let Z = Z ∪ {x̃k}.
(2) If gj(x̃k) + εg ≥ 0 for i = 1, . . . , J, go to Step 3.
(3) Otherwise, go to Step 4.

J Glob Optim (2007) 39:79–100 91

x
2 4

-60

-40

-20

0

20

40

f(x)

S(x)

g(x)

feasible region

x

x
2

-1000

0

1000

2000

3000

4000

g(x)

feasible region

Lg(x)

Rg(x;)

Sg(x;)

x

x

x

x
3.3 3.4 3.5 3.6 3.7

-40

-20

0

20

40

g(x)

feasible region

Sg(x;)

x

x

inf
Lx inf

Ux

3

3 4

b

c

a

Fig. 2 Overall situation of generation of convex cut function. (a) Trial point, x̃, is infeasible (b)
Generating convex cut function at x = x̃ (c) Magnified view of cutting region containing x̃

92 J Glob Optim (2007) 39:79–100

Step 3 Generation of DCU:

(1) Generate r(x; x̃k), Rk(x), and Sk(x) using Eqs. 5–7.
(2) Determine Yk using Eqs. 21–23.
(3) Compute f L

k using Eq. 10.
(4) If k = 1, then f U

k = +∞, else f U
k using Eq. 24.

(5) Determine the next trial point, x̆, using Eq. 11.
(6) Let k = k + 1.
(7) Go to Step 5.

Step 4 Generation of CCF:

(1) Select the most violated constraint, g(x).
(2) Generate Rg(x; x̃) and Sg(x; x̃) using Eqs. 27 and 28.
(3) Determine the infeasible region, X inf, using Eq. 29.
(4) Reduce the search region, X, using Eq. 30.
(5) Determine Yk using Eq. 31.
(6) Determine the next trial point, x̆, using Eq. 11.
(7) Go to Step 5.

Step 5 Convergence test:

(1) If x > x̆∀x ∈ Z, x̆L = xL. Otherwise x̆L = max{x|x < x̆ for x ∈ Z}.
(2) If x < x̆∀x ∈ Z, x̆U = xU. Otherwise x̆U = min{x|x > x̆ for x ∈ Z}.
(3) If x̆U − x̆L < ε, terminate.
(4) Otherwise let x̃k = x̆ and go to Step 2.

The difference between Step 2 of Algorithm 1 and Step 3 of Algorithm 2 is found in
the search region. In Algorithm 2, the search region can be reduced using Eqs. 29 and
30. If the trial point is located in a feasible region, two new points, xnew

i for i = 1, 2,
are generated in Eq. 23. When xnew

i is located in an infeasible region, xnew
i should not

be included.
The stopping rule selected is that of the IBBA (Sergeyev et al. 2001) to compare

Algorithm 2 with the IBBA: a convergence accuracy, ε = 10−4(xU − xL). A feasibility
accuracy, εg, should be determined as a positive value: εg = 10−10(xU − xL), since the
CCF is the tool for detecting the infeasible region.

5.2 Convergence

Using the DCU, Algorithm 1 converges to a global optimum for unconstrained opti-
mization in Sect. 3. In this subsection, it will be shown how to detect the infeasible
region using the CCF. To perform the detection of an infeasible region, an escape
algorithm is proposed:

5.2.1 Escape algorithm

Step 1 Initialization:

(1) Given g(x), xL, and xU, let X = [xL, xU].
(2) αg is calculated using Eq. 26.
(3) Choose any x̃ ∈ {x̃|g(x̃) < 0 for x̃ ∈ X}.
(4) Generate Sg(x; x̃) and X inf at x = x̃ using Eqs. 27 and 29.

J Glob Optim (2007) 39:79–100 93

(5) xinf
U0 = min{x|x ∈ X inf} and xinf

U0 = max{x|x ∈ X inf}.
Step 2 Repetition: for k = 1, 2, . . .

(1) X inf
L =

{
x|Sg

(
x; xinf

L(k−1)

)
< 0 for x ∈ X

}
.

(2) X inf
U =

{
x|Sg

(
x; xinf

U(k−1)

)
< 0 for x ∈ X

}
.

(3) X inf = X inf ∪ X inf
L ∪ X inf

U .
(4) xinf

Lk = min{x|x ∈ X inf} and xinf
Uk = max{x|x ∈ X inf}.

xinf
Uk of Step 2 is obtained using the solution of Sg

(
x; xinf

U(k−1)

)
= 0:

xinf
Uk = xinf

U(k−1) +
−g′

(
xinf

U(k−1)

)
+

√
g′

(
xinf

U(k−1)

)2 − 4αgg
(

xinf
U(k−1)

)

2αg

= T
(

xinf
U(k−1)

)
. (32)

Theorem 2 Given a constraint, g(x)≥ 0, and X = [xL, xU], let g(x) be twice-
differentiable and αg be obtained using Eq. 26. Consider xinf

UB and xinf
LB where xinf

LB < xinf
UB,

g
(
xinf

LB

) = g
(
xinf

UB

) = 0, and g(x) < 0∀x ∈ (
xinf

LB, xinf
UB

)
. Given any xinf

U0 ∈ (
xinf

LB, xinf
UB

)
, if

the sequence of xinf
Uk is determined using Eq. 32, xinf

Uk converges to xinf
UB as k increases.

Proof g′(xinf
UB

) ≥ 0 since g
(
xinf

UB

) = 0 and g(x) < 0∀x ∈ (
xinf

LB, xinf
UB

)
. Using Eq. 32,

x = xinf
UB is the fixed-point of T(x), since g

(
xinf

UB

) = 0 and g′(xinf
UB

) ≥ 0. The sequence
xinf

Uk is strictly increasing and no interior point, x ∈ (
xinf

LB, xinf
UB

)
, can be a fixed-point

of T(x), since g(x) < 0∀x ∈ (
xinf

LB, xinf
UB

)
. The sequence xinf

Uk is bounded as xinf
Uk < xinf

UB,
since g(x) < Sg

(
x; xinf

U(k−1)

) ≤ 0 for x ∈ (
xinf

U(k−1)
, xinf

Uk

]
. Therefore, the sequence xinf

Uk

converges to xinf
UB.

Similarly, the sequence xinf
Lk of Step 2 is strictly decreasing and converges to xinf

LB.

The escape algorithm can detect an infeasible region,
(

xinf
LB, xinf

UB

)
.

If g′
(

xinf
UB

)
> 0, a Taylor series expansion of Eq. 32 in the vicinity of xinf

UB is given

as follows:

xinf
Uk = xinf

UB − 2αg − g′′(ξ4)

2g′(ξ4)

(
xinf

U(k−1) − xinf
UB

)2
,

where xinf
U(k−1)

≤ ξ4 ≤ xinf
UB. As the iteration progresses, ξ4 converges to xinf

UB, and

Definition 1 states that the sequence xinf
Uk converges quadratically. If g′

(
xinf

UB

)
= 0,

xinf
UB is a multiple root of g(x) and xinf

Uk converges linearly, but the proof is omitted
here. The same is true for xinf

LB.
In Algorithm 2, the escape algorithm is improved efficiently as the step of ‘Gen-

eration of CCF’ is performed with the candidate of the global optimum, x̆, using
Eq. 11.

94 J Glob Optim (2007) 39:79–100

Table 2 The asymptotic error constants for unconstrained problems using the relaxed Algorithm
(λr) and Algorithm 1 (λDCU)

Problem α µ a λr λDCU

UC01 1025 20 −0.5887 1.0000 0.2578
UC02 5.4793 4 −0.4477 0.8758 0.3567
UC03 174.1 4 −0.1404 0.9576 0.7237
UC04 0 2 −0.5167 0.8394 0.3043
UC05 334.38 4 −0.4394 0.8726 0.3635
UC06 2.0305 6 −0.3792 0.9725 0.4176
UC07 5.4926 4 −0.3551 0.8738 0.4415
UC08 117.1 4 −0.1645 0.9582 0.6848
UC09 0.69082 4 −0.3683 0.8751 0.4282
UC10 2.7673 4 −0.5358 0.8869 0.2912
UC11 3 6 −0.1690 0.9855 0.6777
UC12 1.8634 6 −0.1678 0.9862 0.6795
UC13 0 2 −0.6043 0.8830 0.2487
UC14 10.181 4 −0.4545 0.8935 0.3512
UC15 6.5431 18 −0.0880 1.0000 0.8166
UC16 0 2 −0.5676 0.9726 0.2706
UC17 108 49 −0.2721 1.0000 0.5345
UC18 1 3 −0.6021 0.7071 0.2500
UC19 4.5 4 −0.4240 0.8818 0.3767
UC20 0.13756 5 −0.4155 0.9411 0.3842

6 Results and discussion

The proposed method was numerically tested with two different aspects:

1. Algorithm 1 was performed for unconstrained optimization problems. Twenty
test problems (UC01–UC20) were adopted from Hansen and Jaumard (1995).
The numerical experiments were performed for the convergence near the global
optimum and for comparison with the results of BC (Breiman and Culter 1993) and
SA (Gergel and Sergeyev 1999). BC and SA construct nonsmooth underestima-
tors, and the underestimator of Algorithm 1 is also a non smooth underestimator.
MacLagan et al. (1996) and Sergeyev (1998) construct better smooth underesti-
mators using smooth auxiliary functions. In this paper, however, a comparison
with smooth underestimators is not considered, since the smooth underestimators
are a different type of underestimators compared with BC, SA, and Algorithm 1.

2. Algorithm 2 was performed for nonconvex constrained optimization problems.
The ten ‘differentiable test problems’, problems 1–10 (NC01–NC10), were adopted
from Famularo et al. (2001), and numerical experiments were compared with
IBBA (Sergeyev et al. 2001). The IBBA was developed to be able to apply non-
differentiable objective functions and constraints. IBBA can be applied to solve a
wider range of global optimization problems compared with Algorithm 2, which
uses the information of the first and second derivatives: the first derivative makes a
tighter underestimator as iteration increases, and the second derivative should be
determined priorly like the Lipschitz constants of IBBA. In this paper, however, a
numerical comparison is performed to introduce a new type algorithm for global
optimization problems.

For solving unconstrained optimization problems (UC01–UC20), the value of α

should be determined priorly. The values of α, shown in Table 2, were determined

J Glob Optim (2007) 39:79–100 95

iteration
0 5 10 15 20

f U
-f

 L

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Algorithm 1
Linear regression
Relaxed method

Fig. 3 Result of Algorithm 1 using DCU for problem UC02

using Eq. 2. In Sect. 3.1, the relaxed algorithm, the basic algorithm for the conver-
gence near a global optimum, is applied to show that the method fits well to the linear
convergence.

To calculate the asymptotic error constant of the relaxed Algorithm, λr, the integer
index, µ, which is the smallest integer k that satisfies Eq. 17, can be obtained using
the following search region which satisfies βL > 0:

X =
[

1
2

(
x∗ + xc

L
)

,
1
2

(
x∗ + xc

U
)]

,

where

xc
L = max

{
xL, max{x|f ′′(x) = 0 for x < x∗}} and

xc
U = min

{
xU, min{x|f ′′(x) = 0 for x > x∗}} .

To obtain the asymptotic error constants of Algorithm 1, linear regression was used
for the log-scale value of the difference between the upper and lower bounds versus
the number of function evaluations. ε = 10−4(xU − xL) was selected as the stopping
condition.

Figure 3 shows the convergence characteristics of problem UC02, where the circles
represent f U − f L generated by Algorithm 1. It can be intuitively said that, as com-
putation progresses beyond eight iterations, the circles align in a straight line on this
log-linear plot. Linear regression yields the slope, a = −0.4477, and the asymptotic
error constant, λDCU = 10−0.4477 = 0.3567. The dotted line represents the convergence
characteristics of the relaxed algorithm, which yields the asymptotic error constant,
0.8758 with µ = 4. Problems, UC03, UC08, UC11, UC12, and UC17, have multiple
global optima. The numbers of the global optima are three for problems UC03 and
UC08, and two for problems UC11, UC12, and UC17. When a problem has multiple
global optima, the asymptotic error constant calculated by the relaxed algorithm
should be corrected by the number of optima before comparison. In Table 2, the
results for the convergence of Algorithm 1 are shown and the asymptotic error con-
stants of Algorithm 1, λDCU, are less than those of the relaxed algorithm, λr, for all

96 J Glob Optim (2007) 39:79–100

Table 3 Numerical results of Algorithm 1 (DCU)

Problem xDCU fDCU DCU x∗ f∗ BC SA
(Hansen (Hansen (Gergel (Gergel
and and and and
Jaumard Jaumard 1995) Sergeyev Sergeyev
1995) 1999) 1999)

UC01 10.000 29763 14 10.000 29763 26 27
UC02 5.1459 1.8996 23 5.1457 1.8996 22 27
UC03 −6.7744 12.031 99 −6.7746 12.031 104 98
UC04 2.8681 3.8505 16 2.8680 3.8505 25 27
UC05 0.9661 1.4891 29 0.9661 1.4891 33 23
UC06 0.6797 0.8242 37 0.6796 0.8242 38 39
UC07 5.1997 1.6013 25 5.1998 1.6013 25 25
UC08 5.4828 14.508 67 5.4829 14.508 86 88
UC09 17.039 1.9060 26 17.309 1.9060 25 26
UC10 7.9787 7.9167 18 7.9787 7.9167 25 25
UC11 2.0946 1.5000 44 2.0940 1.5000 45 41
UC12 4.7123 1.0000 42 4.7120 1.0000 43 37
UC13 0.7072 1.5874 14 0.7071 1.5874 278 89
UC14 0.2250 0.7887 23 0.2249 0.7887 30 30
UC15 2.4142 0.0355 81 2.4142 0.0355 81 47
UC16 1.5908 −7.5159 16 1.5907 −7.5159 87 75
UC17 3.0002 −7.0000 29 3.0000 −7.0000 70 65
UC18 2.0001 0.0000 16 2.0000 0.0000 20 21
UC19 5.8730 7.8157 19 5.8729 7.8157 19 21
UC20 1.1952 0.0635 30 1.1951 0.0635 20 32
Average 33.4 55.1 43.15

problems. Having a smaller value of asymptotic error constant, the convergent rate
increases. In other words, Algorithm 1 has a faster convergent rate than the relaxed
algorithm and shows a linear convergence.

The numerical results of Algorithm 1 are summarized in Table 3: xDCU and fDCU
represent the global optimum using Algorithm 1 and ‘DCU’ represents the number of
trials of Algorithm 1: one trial includes one evaluation of a function and its derivative.
x∗ and f ∗ are the global optimum and its objective function value cited by Hansen
and Jaumard (1995), respectively. ‘BC’ and ‘SA’ represent the number of trials of
BC and SA cited by Gergel and Sergeyev (1999). The computational load, in terms
of the number of trials, decreases to about 61 and 77% compared with BC and SA,
respectively.

For solving nonconvex optimization problems (NC01–NC10), The values of α and
αgj for j = 1, 2, 3 should be determined priorly (see Table 4). These values are used to
generate the DCU and CCF in Eqs. 1 and 25; they are also determined using Eqs. 2
and 26 for f (x) and gj(x) for j = 1, . . . , J. All constraints are evaluated and the most
violated constraint that has the lowest function value is selected to generate the CCF.

Table 5 contains the information of the global optimum (Famularo et al. 2001)
and the summary of the results of the IBBA (Sergeyev et al. 2001). x∗ and f ∗ are the
global optimum and its objective function value, respectively, and xIBBA and fIBBA are
the corresponding values obtained by IBBA. NIBBA

total is the total number of function
evaluations using IBBA.

Table 6 shows the results obtained using Algorithm 2 and the columns in the table
have the following meaning:

J Glob Optim (2007) 39:79–100 97

Table 4 The values of α and αgj for j = 1, 2, 3 for f (x) and gj(x) for j = 1, 2, 3

Problem α αg1 αg2 αg3

NC01 21.125 12.34 – –
NC02 3.275 1.65 – –
NC03 20.8 2.4 – –
NC04 34 124.4 45.75 –
NC05 1 0.069 5.25 –
NC06 12.8 61 2.5 –
NC07 21.682 16.35 25.38 –
NC08 39.75 22 900 60
NC09 7.55 0.5 1.5 0.5
NC10 12.4 15 2.375 7

Table 5 Global optimum and results of IBBA

Problem Famularo et al. (2001) IBBA (Sergeyev et al. 2001)

x* f * xIBBA fIBBA NIBBA
total

NC01 1.0573 −7.6128 1.0573 −7.6123 36
NC02 1.0160 5.4606 1.0156 5.4616 248
NC03 −5.9921 −2.9460 −5.9918 −2.9427 84
NC04 2.4596 2.8408 2.4597 2.8408 1459
NC05 8.8573 −1.2730 9.2850 −1.2748 402
NC06 2.3240 −1.6851 2.3240 −1.6852 228
NC07 −0.7746 −0.3301 −0.7747 −0.3301 794
NC08 −1.1272 −6.6006 −1.1272 −6.6006 536
NC09 4.0000 1.9222 4.0005 1.9222 301
NC10 4.2250 1.4740 4.2247 1.4740 5344

Table 6 Numerical results of Algorithm 2 (DCU/CCF)

Problem xDCU fDCU Nf , Nf ′ Ng Ng′ NDCU
total SPEEDUP

NC01 1.0574 −7.6129 7 17 11 42 0.8571
NC02 1.0188 5.4539 5 44 40 94 2.6383
NC03 −5.9922 −2.9468 12 48 37 109 0.7706
NC04 2.4594 2.8408 23 88 66 288 5.0660
NC05 9.2846 −1.2748 14 26 13 93 4.3226
NC06 2.3240 −1.6852 7 50 44 158 1.4430
NC07 −0.7747 −0.3301 32 54 23 195 4.0718
NC08 −1.1274 −6.6006 18 68 51 291 1.8419
NC09 4.0000 1.9222 13 42 30 182 1.6538
NC10 4.2262 1.4740 76 127 52 585 9.1350

Average 3.1800

(1) The columns xDCU and fDCU represent the global optimum and its objective
function values found by Algorithm 2, respectively.

(2) The columns Nf , Nf ′ , Ng, and Ng′ represent the number of function evaluations
of f , f ′, g, and g′, respectively.

(3) The column NDCU
total represents the total number of function evaluations.

(a)Nf + Nf ′ + Ng + Ng′ , for problems with one constraint;

98 J Glob Optim (2007) 39:79–100

(b)Nf + Nf ′ + 2Ng + Ng′ , for problems with two constraints;
(c)Nf + Nf ′ + 3Ng + Ng′ , for problems with three constraints.

(4) The column ‘SPEEDUP’ represents the index for comparison with IBBA:

SPEEDUP = NIBBA
total

NDCU
total

.

For the number of function evaluations, most problems, except problems NC01 and
NC03, have ‘SPEEDUP’ values greater than 1.

7 Conclusion

In this paper, new global optimization technique has been proposed for single-
variable, twice-differentiable problems based on the difference of convex underes-
timator and the convex cut function. For unconstrained problems, convergence of the
basic algorithm was proved, and an upper bound for the asymptotic error constant
was suggested. Numerical tests show that the upper bound is at most twice as large
as the actual constant. It was also demonstrated that the algorithm requires less com-
putational load compared with BC and SA. For constrained problems, algorithm 2
was employed and exhibited quadratic convergence to locate a zero of constraint.
By the aid of a convex cut function, constrained optimization algorithm guarantees
determination of a global optimum. The numerical experiments indicate that the
proposed algorithm competes with another covering method, IBBA, which uses the
Lipschitz constant. The proposed algorithm obtains the optimum values of the objec-
tive function and decision variable for all problems and requires a lower number of
total function evaluations for most problems.

References

Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method, αBB,
for process design. Comp. Chem. Engng. Suppl. 20, S419–S424 (1996)

Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear prob-
lems. AIChE J. 46, 1769–1797 (2000)

Adjiman, C.S., Dallwig, S., Floudas, C.A.: A global optimization method, αBB, for general twice-
differentiable constrained NLPs—I. Theoretical advances. Comp. Chem. Engng. 22, 1137–1158
(1998a)

Adjiman, C.S., Dallwig, S., Floudas, C.A.: A global optimization method, αBB, for general twice-
differentiable constrained NLPs—II. Implementation and computational results. Comp. Chem.
Engng. 22, 1159–1179 (1998b)

Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice–differentiable prob-
lems. J. Glob. Optim. 9, 23–40 (1996)

Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice con-
tinuously differentiable constrained NLPs. J. Glob. Optim. 30, 367–390 (2004a)

Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underesti-
mators: box-constrained NLP problems. J. Glob. Optim. 29, 249–264 (2004b)

Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: a global optimization method for general con-
strained nonconvex problems, J. Glob. Optim. 7, 337–363 (1995)

Basso, P.: Iterative method for localization of the global maximum. SIAM J. Num. Anal. 19, 781–792
(1982)

Breiman, L., Culter, A.: A derterministic alogorithm for global optimization. Math. Program. 58,
179–199 (1993)

Byrne, R.P., Bogle, I.D.L.: Global optimization of constrained non-convex programs using reformu-
lation and interval analysis. Comp. Chem. Engng. 23, 1341–1350 (1999)

J Glob Optim (2007) 39:79–100 99

Caratzoulas, S., Floudas, C.A.: Trigonometric convex underestimator for the base functions in fourier
space. J. Optim Theory Appl. 124, 339–362 (2005)

Elwakeil, O.A., Arora, R.S.: Two algorithms for global optimization of general NLP problems, Int. J.
Num. Methods Eng. 39, 3305–3325 (1996)

Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential alge-
braic systems. Ind. Chem. Engng. Res. 39, 1291–1310 (2000)

Famularo, D., Sergeyev, YA.D., Pugliese, P.: Test problems for Lipschitz univariate global opitmization
with multiextremal constraints. In: Dzemyda, G., Saltenis, V., Zilinskas, A. (eds.) Stochastic and
Global Optimization. Kluwer Academic Publishers, The Netherlands (2001)

Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Application. Kluwer Aca-
demic Publishers, The Netherlands (2000a)

Floudas, C.A.: Global optimization in design and control of chemical process systems, J. Process
Control 10, 125–134 (2000b)

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in
the 21st century: advances and challenges. Comp. Chem. Engng. 29, 1185–1202 (2005)

Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with
Lipschitzian dervatives, Comput. Math. Appl. 37, 163–179 (1999)

Hansen, P., Jaumard, B.: Lipschitz optimization. In: Horst, R., Pardalos, M.P. (eds.) Handbook of
Global Optimization. Kluwer Academic Publishers, The Netherlands (1995)

Hansen, P., Jaumard, B., Lu, S.-H.: Global optimization of univariate Lipschitz functions: II. New
algorithms and computational comparison. Math. program. 55, 273–292 (1992a)

Hansen, P., Jaumard, B., Lu, S.-H.: On the use of estimates of the Lipschitz constant in global optimi-
zation. J. Optim. Theory Appl. 75, 195–200 (1992b)

Hertz, D., Adjiman, C.S., Floudas, C.A.: Two results on bounding the roots of interval polynomials.
J. Comp. Chem. Engng. 23, 1333–1339 (1999)

Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer-Verlag, Berlin (1996)
Ichida, K.: Constrained optimization using interval analysis. Comp. Ind. Engng. 31, 933–937 (1996)
Jansson, C.: Quasiconvex relaxations based on interval arithmetic. Linear Algebra Appl. 324, 27–53

(2001)
Kearfott, B.R.: A fortran 90 environment for research and prototyping of enclosure algorithms for

nonlinear eqautions and global optimization. ACM Trans. Math. Softw. 21, 63–78 (1995)
Kim, Y., Lee, T.: Acceleration of αBB global optimization algorithm using quadratic and linear

underestimator. ESCAPE-11 Suppl. Proc. 35–40 (2001)
MacLagan, D., Sturge, T., Baritompa, W.P.: Equivalent methods for global optimization. In: Floudas,

C.A., Pardalos, P.M. (eds.) State of the Art in Global Optimization. Kluwer Academic Publishers,
Dordrecht (1996)

Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard-Jones microclusters. J.
Chem. Phys. 97, 7667–7677 (1992)

Maranas, C.D., Floudas, C.A.: A deterministic global optimization approach for molecular structure
determination, J. Chem. Phys. 100, 1247–1261 (1994)

Mayne, D.Q., Polak, E.: Outer approximation algorithm for non-differentiable optimization problems,
J. Optim. Theory Appl. 42, 19–30 (1984)

Meyer, C.A., Floudas, C.A.: Convex hull of trilinear monomials with mixed-sign domains. J. Glob.
Optim. 29, 125–155 (2004)

Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differentiable functions
by piecewise quadratic perturbation: spline αBB underestimators. J. Glob. Optim. 32, 221–258
(2005)

Meyer, C.A., Floudas, C.A., Neumaier, A.: Global optimization with nonfractable constraints. Ind.
Chem. Engng. Res. 41, 6413–6424 (2002)

Pijavskii, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math.
Math. Phys. 12, 57–67 (1972)

Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications
in process design. Comp. Chem. Engng. 19, 551–566 (1995)

Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Pro-
gram. 81, 127–146 (1998)

Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipcshitz univariate
global optimization with multiextremal constraints. J. Glob. Optim. 21, 317–341 (2001)

Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index information algorithm with local tuning for solving
multidimensional global optimization problems with multiextremal constraints. Math. Program.
96, 489–512 (2003)

100 J Glob Optim (2007) 39:79–100

Smith, E.M.B., Pantelides, C.C.: Global optimization of nonconvex MINLPs. Comp. Chem. Engng.
21S, S791–S796 (1997)

Wang, T., Wah, B.W.: Handling inequality constraints in continuous nonlinear global optimization.
Integr. Design Process Technol. 267–274 (1996)

Zamora, J.M., Grossmann, I.E.: A global MINLP optimization algorithm for the synthesis of heat
exchanger networks with no stream splits. Comp. Chem. Engng. 22, 367–384 (1998)

	A new global optimization method for univariate constrained twice-differentiable NLP problems
	Abstract
	Introduction
	Convex underestimator of BB
	DCU for an unconstrained optimization problem
	Basic algorithm
	Convergence
	Convergence near a global optimum
	Algorithm 1
	CCF for a nonconvex constraint
	Algorithmic procedure
	Algorithm 2
	Convergence
	Escape algorithm
	Results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

